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Introduction: 

1 Introduction: 

Communicable diseases cast down substantial impacts on socio-economic structure of human population since very ancient times. The 

upshots of an emergent epidemic are not only limited to extensive deaths and morbidity, also causes extravagant deterioration in economy, 

social life, public health sector, education sector etc. worldwide. The human population in a certain epidemic region feels intense 

psychological fear that involves fear of losing life and sudden economic loss after emergence of any communicable disease. Psychological 

fear developed in human beings during an epidemic situation activates several behavioral changes that would curtail the chain of 

transmission, more precisely these behavioral changes are able to control the

effective contacts between susceptible humans and infected humans for a short period. Frightened human beings employ different 

intervention strategies to isolate themselves from social contacts [1]. Disease propagation is hampered due to self-imposed fear and thus 

it is advantageous in fragmented control of epidemic [3]. At the early stages of infection, government and public health sectors have no 

precise ideas regarding pharmaceutical interventions (medications, vaccination etc.) [2]. During emergence of an epidemic suddenly in a 

community, people started to be frightened regarding availability of proper medications and vaccination as well as side effects of these 

interventions [12]. At beginning stage of an infection, government and public health sectors focus on imposing non-pharmaceutical 

interventions like social distancing, wearing masks, frequent hand washing etc. along with work from home, online study, restrictions on 

traveling etc. [2, 4]. Appropriate information regarding non-pharmaceutical interventions is disseminated in different media like Radio, 

TV, Newspaper, social media, YouTube etc. that would be very helpful in lowering the level of infection [5-7]. However, counterfeit 

information regarding the etiological agents of any infection and several interventions strategies (viz. medications, vaccinations) conveyed 

by some fraud media (specially some fraud information spread in social media) proliferate rapidly like fire. At that instant, people in a 

certain community be more frightened resulting depletion in immunity. Long lasting level of anxiety or another form of psychological fear 

causes immune loss and frightened people would be more vulnerable to any infection. Authentic awareness via several health camps and 
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Abstract Classical 𝑆𝐸𝐼𝑅 epidemic model comprised of four compartments - susceptible 

𝑆, exposed 𝐸, infected 𝐼, and recovered 𝑅 is a fundamental mechanism of 

epidemiological modeling that is enormously used in exploring vigorous dynamical 

traits of infectious diseases. To analyze the intricate dynamics of infectious diseases 

having noteworthy latent period, the utilization of SEIR models (consisting of exposed 

compartment 𝐸) is very beneficial. Onset of an epidemic outbreak in a certain 

geographical region triggers psychological fear in the community and this anxiety 

engenders relevant behavioral changes in human population during the epidemic 

progression. These behavioral changes along with awareness campaign coordinated by 

mass media (like Radio, TV, Newspaper, social media, YouTube etc) are capable of 

controlling the transmission of any communicable disease. However, some fraud news 

and rumors spread in mass media escalate the fear exponentially. In this article, the 

influence of psychological fear and the control of its consequential behavioral changes 

with the help of accurate mass media campaign are calibrated through a classical 𝑆𝐸𝐼𝑅 

mathematical model. The equilibrium points of the system and the stability conditions 

of the epidemic system around the equilibrium points are investigated. Sensitivity 

analysis is performed to measure the robustness of the model parameters in disease 

progression. Comprehensive numerical simulations are designed to portray different 

scenarios of the disease dynamics. The theoretical analysis and numerical simulations 

suggest that accurate mass media awareness is beneficial to control and diminish the 

psychological fear associated to an ongoing epidemic progression and its future 

outbreaks. 
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media is necessary to control self -imposed psychological fear of being infected as well as to inform individuals about available vaccination 

and its tenable side effects [6, 8, 9].  

Epidemic models are being considered as one of the crucial tools to understand the vital dynamics of any communicable disease and these 

models also help to perceive preventive as well as control measures. A handful of mathematical models exist that established the role of 

mass media in disease dynamics [5, 6, 9–11]. These studies have explored that the effect of mass media awareness is one of the efficient 

and cost-effective measures in controlling infection. However, the impact of psychological fear in disease dynamics has not been explored 

in a large scale yet. In the study of Ghosh et al. [1], the authors have studied the impact of media and self-imposed psychological fear 

through an SI-type mathematical model of HIV/AIDS transmission dynamics. In, [9] the authors analyzed that if degree of fear is high, it 

will reduce the necessity of increase in the growth of media awareness taking the number of media advertisements as a dynamic variable. 

Yousef at al. [12], investigated the impact of fear triggered by different uncertain information spread in media on a community during 

COVID-19 pandemic situation. Being motivated from these studies, in our present study, we establish a classic SEIR compartmental model 

depicting the combined impact of accurate mass media awareness in controlling any communicable disease by curtailing the self-imposed 

psychological fear from a community.  

Our present article is synchronized as follows: in Section 2, a classical SEIR ODE compartmental, deterministic mathematical model is 

formulated to capture the influence of accurate mass media awareness in controlling load of infection and psychological fear raised in a 

community. Section 3 is dealing with positivity and boundedness of the solutions of the system. In Section 4, the equilibrium points and 

the basic reproduction number of the system are computed. Section 5 is dealing with local dynamics of the epidemic system. Section 6 is 

dealing with global dynamics of the system. In Section 7 and Section 8, sensitivity analysis is performed to measure influence of the model 

parameters on overall disease dynamics of the endemic equilibrium and basic reproduction number respectively. In Section 9, various 

numerical simulations are attached to validate the analytical results biologically. Section 10 is composed of conclusions in respect of overall 

study

 

2 The Model formulation 

 Psychological fear (or, panic) is positively correlated with disease comorbidities, fast spreading of an infection, chronicity of the infection, 

disease induced deaths and socio-economic distress in a certain geographical region. Control of this kind of psychological fear is possible 

via accurate mass media awareness and pathological treatments. We construct an ODE-compartmental four dimensional classic 𝑆𝐸𝐼𝑅 

deterministic model calibrating the control of psychological fear of being infected and about side effects of available vaccine. In our 

proposed model, 𝑆(𝑡) is representing the class of susceptible individuals, 𝐸(𝑡) is representing the class of exposed individuals, 𝐼(𝑡) is 

indicating the class of infected individuals, and 𝑅(𝑡) is representing the class of recovered individuals at any instant 𝑡 (measured in days). 

Thus, the coupled system of ordinary differential equations is as follows: 

                                        

𝑑𝑆

𝑑𝑡
= 𝛬 − (1 − 𝜌)

𝛽𝑆𝐼

1+𝜖𝐼
− 𝛿𝑆,

𝑑𝐸

𝑑𝑡
= (1 − 𝜌)

𝛽𝑆𝐼

1+𝜖𝐼
− 𝛾𝐸 − 𝛿𝐸,

𝑑𝐼

𝑑𝑡
= 𝛾𝐸 − 𝜂𝐼 − 𝑑𝐼 − 𝜉𝐼 − 𝛿𝐼,

𝑑𝑅

𝑑𝑡
= 𝜂𝐼 + 𝜉𝐼 − 𝛿𝑅,

                                            (1.1) 

      with non-negative biologically meaningful initial conditions needed for the dynamical study 

                                         𝑆(0) > 0, 𝐸(0) ≥ 0, 𝐼(0) ≥ 0, 𝑅(0) ≥ 0.                                   (2) 

Here, the constant 𝛬 is representing the constant recruitment of susceptible individuals in the epidemic system (1). The term 𝛽 stands 

for the effective contact rate between susceptible individuals and infected individuals. The term 𝜖 stands for psychological fear which 

is able to generate saturation in the transmission of any infection. Here, 𝜌 is denoting the accurate media awareness which is crucial 

in controlling the load of infection. 𝛿 is describing the natural death rate of each individual belong to the four compartments. At the 

rate 𝛾, clinical symptoms appear and at the rate 𝜂, infected individuals are getting recovery naturally. Individuals being recovered at 

the rate 𝜉 through pharmaceutical interventions. The term 𝑑 stands for disease-induced death rate. All the parameters are positive and 

their parametric value for numerical simulation are enlisted in Table 1. The dynamical characteristics of the epidemic system (1) is 

showed in the Figure 1. 
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Figure 1: Schematic diagram of the epidemic system (1) portraying the flow of infection. 

 

 
3 Basic characteristics of the model 

In this section, the basic characteristics of the epidemic system (1) viz. positivity and boundedness of the system are investigated   

since the population could not be unbounded and negative any time. 

3.1 Non-negativity of the solutions 
 

Theorem 1.  All the solutions of the epidemic system (1) along with the initial values (2) are positively invariant in the interior of 𝑅+4. 

Proof. Rewriting the last equation of the epidemic system (1), we get 

 
𝑑𝑅

𝑑𝑡
≥ −𝛿𝑅. 

          Thus, 

𝑅(𝑡) ≥ 𝑅(0)exp (−∫ 𝛿
𝑡

0
𝑑𝑥) > 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑡 𝑡 > 0.                            (3) 

         Writing the third equation of the epidemic system (1), we get 

𝑑𝐼

𝑑𝑡
≥ −(𝜂 + 𝑑 + 𝜉 + 𝛿)𝐼, 

        which implies that 

𝐼(𝑡) ≥ 𝐼(0)exp (−∫ (𝜂 + 𝑑 + 𝜉 + 𝛿)
𝑡

0
𝑑𝑥) > 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑡 𝑡 > 0.            (4) 

         The second equation of the system (1) could be rewritten as 

𝑑𝐸

𝑑𝑡
≥ −(𝛾 + 𝛿)𝐸. 

          Integrating the above inequality, we obtain 

𝐸(𝑡) ≥ 𝐸(0)exp (−∫ (𝛾 + 𝛿)
𝑡

0
𝑑𝑥) > 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑡 𝑡 > 0.                                       (5) 

         Similarly, the first equation of the system equations (1) could be expressed as 

𝑑𝑆

𝑑𝑡
≥ −(1 − 𝜌)

𝛽𝑆𝐼

1 + 𝜖𝐼
− 𝛿𝑆. 

         Integrating the above inequality, we get 

S(t) ≥ 𝑆(0)𝑒𝑥𝑝 (−∫ ((1 − 𝜌)
𝑡

0
 
β S I

1+𝜖 𝐼
+  𝛿)) 𝑑𝑥 >  0  for all instant t > 0.             (6) 

        Therefore, all the solution trajectories (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡)) of the system (1) together with the non-negative initial  

conditions (2) would be positive, for all instant 𝑡. 

  3.2 Boundedness 
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In this subsection, we investigate the boundedness of the solutions of the epidemic system (1), as the solutions should be well-posed. 

Theorem 2.  All the solutions of the epidemic system (1) which initiate in ℝ+
4   are uniformly bounded in the region 𝛤 (defined in the proof), for all 

time 𝑡 > 0. 

Proof. Summing up all the equations of the 𝑆𝐸𝐼𝑅 system (1), we have 
𝑑𝑃

𝑑𝑡
=

𝑑(𝑆 + 𝐸 + 𝐼 + 𝑅)

𝑑𝑡
= 𝛬 − 𝛿(𝑆 + 𝐸 + 𝐼 + 𝑅) − 𝑑𝐼,

⇒ 𝑖. 𝑒.
𝑑𝑃

𝑑𝑡
+  𝛿 𝑃 ≤  Λ

 

     Integrating both sides of the above inequality, we get 

0 < 𝑃(𝑡) ≤
𝛬

𝛿
+ 𝑃(0)𝑒−𝛿𝑡 , 

where, 𝑃(0) = 𝑆(0) + 𝐸(0) + 𝐼(0) + 𝑅(0). Thus, we have 𝑃(𝑡) =
𝛬

𝛿
 as 𝑡 → ∞. Therefore, all the solution of the system (1) that initiating in 

{ℝ+
4 }  are confined in the region 

Γ =  {(𝑆 + 𝐸 + 𝐼 + 𝑅) ∈  ℝ+
4 ∶ 0 < 𝑆 + 𝐸 + 𝐼 + 𝑅 ≤  

Λ

𝛿
+  𝜏} 

for any 𝜏 > 0 and for 𝑡 → ∞. The region 𝛤 is positively invariant and attracting region. The well-posedness of the system is established 

in this way. Hence the proof.  

 

Table 1: Relevant parameters values used for numerical simulations of the system (1). 

 

 

 

 

 

 

 

 

 

 

 

 

4 Equilibrium points of the system 

The 𝑆𝐸𝐼𝑅 epidemic system (1) executes two steady states namely – 

(𝑖) the disease-free equilibrium (DFE) 𝐸0 = (𝛬/𝛿, 0,0,0), which always exists and 

(𝑖𝑖) the endemic equilibrium (EE) 𝐸∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗), whose existence conditions would be studied. 

The components of the endemic equilibrium 𝐸∗ are computed as 

𝑆∗ =
(𝛾 + 𝛿)(𝜂 + 𝑑 + 𝜉 + 𝛿) + 𝛬𝜖𝛾

𝛾((1 − 𝜌)𝛽 + 𝛿𝜖)
, 𝐸∗ =

𝛿(𝜂 + 𝑑 + 𝜉 + 𝛿)(𝑅0 − 1)

𝛾((1 − 𝜌)𝛽 + 𝛿𝜖)
,

𝐼∗ =
𝛿(𝑅0 − 1)

(1 − 𝜌)𝛽 + 𝛿𝜖
, 𝑅∗ =

(𝜂 + 𝜉)(𝑅0 − 1)

(1 − 𝜌)𝛽 + 𝛿𝜖
.

 

It is obtained that EE exists when 𝑅0 > 1. 

4.1 Basic reproduction number 

 Using the Next-Generation Matrix (NGM) method, we compute the basic reproduction number of the system [13, 14]. Basic 

reproduction number plays the center role in analyzing dynamics of any communicable disease. Let us assume that 𝐹 be the 

emergence rate of new infections and 𝑉 be the transition rate of infection between the infected compartments 𝐸 and 𝐼 at the DFE 𝐸0 

which are defined as follows: 

𝐹 = ((1 − 𝜌)
𝛽𝑆𝐼

1 + 𝜖𝐼
0

)𝑎𝑛𝑑𝑉 = (
(𝛾 + 𝛿)𝐸

−𝛾𝐸 + (𝜂 + 𝑑 + 𝜉 + 𝛿)𝐼
). 

Parameters Assigned Value 

𝛬 10 

𝜌 0.7 

𝛽 0.05 

𝜖 [0.1 – 1.25] 

𝛾 1.2 

𝜂 0.4 

𝑑 0.2 

𝜉 1.25 

𝛿 [0.05, 0.2] 
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    Thus according to [13] , we get the entrywise non-negative matrices 𝐹 and 𝑉 as 

𝐹 = (0 (1 − 𝜌)
𝛽𝛬

𝛿
0 0

)𝑎𝑛𝑑 𝑉 = (
(𝛾 + 𝛿) 0

−𝛾 (𝜂 + 𝑑 + 𝜉 + 𝛿)
). 

     Henceforth, the next-generation matrix defining the expected value of secondary infections is defined as 

𝐹𝑉−1 = (

(1 − 𝜌)𝛽𝛬𝛾

𝛿(𝛾 + 𝛿)(𝜂 + 𝑑 + 𝜉 + 𝛿)

(1 − 𝜌)𝛽𝛬

𝛿(𝜂 + 𝑑 + 𝜉 + 𝛿)

0 0

). 

     The basic reproduction number, 𝑅0, the spectral radius (𝑟) of 𝐹𝑉−1 be designated as 

𝑟(𝐹𝑉−1) = 𝑅0 =
(1 − 𝜌)𝛽𝛬𝛾

𝛿(𝛾 + 𝛿)(𝜂 + 𝑑 + 𝜉 + 𝛿)
. 

     With the help of this basic reproduction number (𝑅0), a threshold, we will perform theoretical analysis of the system (1). 

 
5 Local dynamics of the system 

Theorem 3.  The 𝑆𝐸𝐼𝑅 system (1) is LAS (locally asymptotic stable) around the DFE 𝐸0 whenever 𝑅0 < 1; otherwise, the system would be unstable 

for 𝑅0 > 1. 

Proof. To analyze the local stability of the 𝑆𝐸𝐼𝑅 epidemic system (1) around the DFE 𝐸0, first we have to compute the Jacobian matrix with 

reference to the system (1) at the DFE which is defined as follows: 

𝐽0 =

(

 
 

−𝛿 0 0 0

0 −(𝛾 + 𝛿)
(1 − 𝜌)𝛽𝛬

𝛿
0

0 𝛾 −(𝜂 + 𝑑 + 𝜉 + 𝛿) 0

0 0 (𝜂 + 𝜉) −𝛿)

 
 
. 

From the characteristic equation for the Jacobian 𝐽0 corresponding to the eigenvalue 𝜆 it can be observed that two eigen values are negative 

(−𝛿, −𝛿) and the rest two eigenvalues can be determined from the following quadratic equation 

                                                                    𝜆2 + 𝑎1𝜆 + 𝑎0 = 0,                                                                     (7) 

   where 

𝑎1 = (𝛾 + 𝜂 + 𝑑 + 𝜉 + 2𝛿),

𝑎0 = (𝛾 + 𝛿)(𝜂 + 𝑑 + 𝜉 + 𝛿) −
(1 − 𝜌)𝛽𝛬𝛾

𝛿
.
 

The equation (7) reveals that for the stability of the DFE, the rest two eigenvalues should be negative or have negative real parts 

and that would be possible only when 𝑎0 > 0 that is 𝑅0 < 1. Therefore, the disease-free equilibrium (𝐸0) would be LAS (locally 

asymptomatic stable) and the elimination of infection would take place from the system if and only if 𝑅0 < 1 and the DFE would 

be unstable if 𝑅0 would be greater than unity.  
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Figure 2: The figure is portraying solution trajectories of the system (1) for different initial conditions. The baseline parameter 

values are same as they are enlisted in Table 1 whenever 𝑅0 = 0.9954 < 1. 

 

       Theorem 4.  The 𝑆𝐸𝐼𝑅 system (1) is LAS (locally asymptotic stable) around the EE 𝐸∗ whenever 𝑅0 > 1; otherwise, the system would be      

        unstable for 𝑅0 < 1. 

 

Proof. To analyze the local stability of the 𝑆𝐸𝐼𝑅 system (1) around the EE 𝐸∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗), first we have to compute the Jacobian 

matrix with reference to the system (1) at the EE which is defined as follows: 

𝐽∗ =

(

 
 
 
 
−(1 − 𝜌)

𝛽𝐼∗

1 + 𝜖𝐼∗
− 𝛿 0 −(1 − 𝜌)

𝛽𝑆∗

(1 + 𝜖𝐼∗)2
0

(1 − 𝜌)
𝛽𝐼∗

1 + 𝜖𝐼∗
−(𝛾 + 𝛿) (1 − 𝜌)

𝛽𝑆∗

(1 + 𝜖𝐼∗)2
0

0 𝛾 −(𝜂 + 𝑑 + 𝜉 + 𝛿) 0

0 0 (𝜂 + 𝜉) −𝛿)

 
 
 
 

. 

         The characteristic equation for the Jacobian 𝐽∗ corresponding to the eigenvalue 𝜆1 is given by 

                                                                𝑎3𝜆1
3 + 𝑎2𝜆1

2 + 𝑎1𝜆1 + 𝑎0 = 0,                                                            (8) 

         where,     

𝑎3 = 1,

𝑎2 = (𝜂 + 𝑑 + 𝜉 + 3𝛿 + 𝛾) + (1 − 𝜌)
𝛽𝐼∗

1 + 𝜖𝐼∗
,

𝑎1 = (𝛾 + 𝛿)(𝜂 + 𝑑 + 𝜉 + 𝛿) + 𝛿(𝜂 + 𝑑 + 𝜉 + 2𝛿 + 𝛾) + (1 − 𝜌)
𝛽𝐼∗

1 + 𝜖𝐼∗
[1 −

𝛾

(1 + 𝜖𝐼∗)
] ,

𝑎0 = 𝛿(𝛾 + 𝛿)(𝜂 + 𝑑 + 𝜉 + 𝛿) + (1 − 𝜌)
𝛽

1 + 𝜖𝐼∗
[𝐼∗(𝛾 + 𝛿)(𝜂 + 𝑑 + 𝜉 + 𝛿) − 𝛾𝛿

𝑆∗

1 + 𝜖𝐼∗
]

 

To analyze the stability of the epidemic system (1) around the EE 𝐸∗, we take help of well-known Routh-Hurwitz criteria of stability 

From the characteristic equation (8), it could be seen that one eigenvalue is 𝛿 which is strictly negative and purely real. To check the 

Routh-Hurwitz criteria is satisfied not, we have to check whether (𝑖)𝑎𝑖
,𝑠 > 0, for 𝑖 = 0,1,2,3 and 𝑎2𝑎1 > 𝑎3𝑎0. It could be observed that 

Routh-Hurwitz criteria would be satisfied only if (𝑖)𝐼∗ >
𝛾−1

𝜖
 and (𝑖𝑖)𝑅0 > 1. Thus, the epidemic system (1) is LAS around the EE 𝐸∗ 

only if (𝑖)𝐼∗ >
𝛾−1

𝜖
 and (𝑖𝑖)𝑅0 > 1. Otherwise, system would be unstable. Hence the proof.◻ 

 



 

32 

 

 
 

Figure 3: The figure is portraying the solution trajectories of the epidemic system (1) for 𝑅0 > 1 and varying the rate of 

accurate media awareness, 𝜌 = 0.7,0.75,0.8. Rest parameter values are same as they are enlisted in Table 1. 

 

 
 

 

Figure 4: The figure is portraying the solution trajectories of the epidemic system (1) for R0 > 1 and varying the rate of 

psychological fear, ϵ = 0.1,0.5,1.25. Rest parameter values are same as they are enlisted in Table 1. 
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Figure 5: The figure is portraying the solution trajectories of the epidemic system (1) for 𝜌 = 0.8, 𝑅0 > 1, and 𝜌 = 0.803, 𝑅0 < 1. 

Rest parameter values are same as they are enlisted in Table 1. 

 

 

 

6 Global dynamics of the system 

Theorem 5.  The 𝑆𝐸𝐼𝑅 epidemic system (1) is GAS (globally asymptotically stable) around the DFE 𝐸0 whenever 𝑅0 < 1; otherwise, the 

system would be unstable for 𝑅0 > 1. 

Proof. It is obtained from the 𝑆𝐸𝐼𝑅 epidemic system (1) that 𝑆, and 𝑅 are the disease-free classes of the epidemic system (1) and 

the infected classes are 𝐸, and 𝐼. Thus, we can rearrange the 𝑆𝐸𝐼𝑅 epidemic system equations (1) as 
𝑑𝑋

𝑑𝑡
= 𝑃(𝑋, 𝑌)

𝑑𝑌

𝑑𝑡
= 𝐺(𝑋, 𝑌), 𝐺(𝑋, 0) = 0,

 

where the compartments could be written as 

𝑋 = ( 𝑆, 𝑅)  ∈  ℝ+
2 , 

𝑌 = ( 𝐸, 𝐼)  ∈  ℝ+
2 . 

Now, following the approach implemented by Castillo-Chavez [15, 16] , we are aimed to study the conditions of global stability 

of the epidemic system (1) around the disease-free equilibrium point 𝐸0 = (𝛬/𝛿, 0,0,0). To analyze the global stability of 𝑆𝐸𝐼𝑅 

epidemic system (1), the system equations (1) must satisfy the following two conditions: 

1. 
𝑑𝑋

𝑑𝑡
= 𝑃(𝑋, 0), 𝑋∗ is globally asymptotic stable. 

2. 𝐺(𝑋, 𝑌) = 𝐾𝑌 − 𝐺(𝑋, 𝑌), 𝐺(𝑋, 𝑌) ≥ 0 where 𝐾 = 𝐷𝑌𝐺(𝑋
∗, 0) is the Metzler Matrix and (𝑋, 𝑌) ∈ 𝛤. The region 𝛤 is biological 

feasible and attracting where all solutions of the system (1) initiating from ℝ+
4   will enter into the interior of the region 𝛤 and will 

never decamp from the region. Consequently, from the system (1), it could be computed that 

𝑃(𝑋, 0) = (
𝛬 − 𝛿𝑆
0

), 
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𝐾 = (
−(𝛾 + 𝛿) 0

𝛾 −(𝜂 + 𝑑 + 𝜉 + 𝛿)
), 

𝑎𝑛𝑑 𝐺 = ((1 − 𝜌)
𝛽𝑆𝐼

1 + 𝜖𝐼
0

). 

Consequently, it is observed that for (𝑋, 𝑌) ∈ 𝛤, 𝐺(𝑋, 𝑌) ≥ 0 and it could be found that 𝑋∗ = (𝛬/𝛿, 0) is globally asymptotically 

stable equilibrium point of the limiting system, 
𝑑𝑋

𝑑𝑡
= 𝑃(𝑋, 0). Hence, the two above stated conditions are satisfied for 𝑅0 < 1. 

Thus, the 𝑆𝐸𝐼𝑅 epidemic system (1) is globally asymptotically stable around the disease-free equilibrium point 𝐸0 = (𝛬/𝛿, 0,0,0) 

is while 𝑅0 < 1. Otherwise, it would be unstable. ◻ 

 
Figure 6: The figure is portraying the global stability of the epidemic system (1) around the endemic equilibrium point 

irrespective of initial conditions in the 𝑆 − 𝐸 − 𝐼 phase space with 𝜌 = 0.7 and 𝑅0 = 1.516 > 1. 

 

7 Sensitivity analysis of the endemic equilibrium 

 
In this section, the sensitivity of the endemic equilibrium 𝐸∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) of the 𝑆𝐸𝐼𝑅 epidemic system (1) would be analyzed 

following the technique of Chitnis et al.[19] . Sensitivity analysis is used in order to determine the influence and robustness of 

model parameters value related to the endemic equilibrium 𝐸∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) in disease prevalence, disease progression and 

overall disease dynamics. 

 

Parameters associated to 𝐸∗ which have sensitivity indices greater than zero, imply the fact that increasing of this parametric 

value, would increase the values of components associated to 𝐸∗. Similarly, for the parameters associated to 𝐸∗ having sensitivity 

indices less than zero, imply the fact that increasing of this parametric value, would decrease the the values of components 

associated to 𝐸∗. The sensitivity indices of the parameters related to components of the endemic equilibrium are computed and 

enlisted in the following Table 2. 
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Figure 7: The figure is portraying the global stability of the epidemic system (1) around the disease-free equilibrium point 

irrespective of initial conditions in the 𝐸 − 𝐼 − 𝑅 phase space with 𝜌 = 0.803 and 𝑅0 = 0.9954 < 1. 

 

From the Table 2, it is obtained that the parameters which are positively correlated with 𝑆∗ are 𝛬, 𝜌, 𝜖, 𝛾, 𝜂, 𝜉, and 𝑑 and the 

parameters which are negatively correlated with 𝑆∗ are 𝛽 and 𝛿. From the Table 2, it is obtained that the parameters which are 

positively correlated with 𝐸∗ are 𝛬, 𝛽, 𝛾 and 𝑑 and the parameters which are negatively correlated with 𝐸∗ are 𝜌, 𝜖, 𝜂, 𝜉 and 𝛿. 

From the Table 2, it is obtained that the parameters which are positively correlated with 𝐼∗ are 𝛬, 𝜌, 𝛽 and 𝛾. Again, the parameters 

which are negatively correlated with 𝐼∗ are 𝜖, 𝜂, 𝜉, 𝑑 and 𝛿. From the Table 2, it is obtained that the parameters which are 

positively correlated with 𝑅0 are 𝛬, 𝜌, 𝛽 and 𝛾. Again, the parameters which are negatively correlated with 𝐼∗ are 𝜖, 𝜂, 𝜉, 𝑑 and 

𝛿. Increasing the value of parameters that are positively correlated to 𝐸∗, the level of infection would be increased. Henceforth, 

the value of these parameters must be reduced. 

 

Table 2: Sensitivity indices of the parameters related to 𝐸∗ of the 𝑆𝐸𝐼𝑅 system (1). 

Parameters Sensitivity Indices 

    𝑆∗     𝐸∗    𝐼∗     𝑅∗ 

𝛬 +0.863309353 +2.448979592 +0.758437019 +1.053883451 

𝜌 +0.451612903 -5.337941628 +2.175115207 +0.780024848 

𝛽 -0.193548387 +2.287689269 +2.745227123 +0.822520148 

𝜖 +0.175214667 -0.672043011 -0.806451613 -0.289204128 

𝛾 +0.227625899 +0.354010025 +1.082706767 +0.175647242 

𝜂 +0.043741007 -0.517006803 -0.508734694 -0.250306191 

𝜉 +0.136690647 -1.615646259 -1.589795918 -0.782206846 

𝑑 +0.021870504 +0.138980323 -0.254367347 -0.168621352 

𝛿 -0.061797482 -2.098425788 -2.637744361 -1.123772564 
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Figure 8: The figure is portraying contour plot of sensitivity of 𝑅0 varying the rate of disease-transmission (𝛽) and the rate of 

accurate media awareness (𝜌). 

In this section, we would carry out normalized forward sensitivity indices of the baseline parameter values associated to the 

basic reproduction number, 𝑅0 . The normalized forward sensitivity index of 𝑅0 with respect to the rate of disease transmission 

(𝛽) is given by 

𝛶𝛽
𝑅0 =

𝜕𝑅0
𝜕𝛽

×
𝛽

𝑅0
. 

 

Table 3: Sensitive indices of the model parameters associated to 𝑅0 of 𝑆𝐸𝐼𝑅 model (1) 

 

 

 

 

 

 

 

 

 

 

Using the baseline parameter values, it is obtained that 𝛶𝛽
𝑅0 = +1. This computed sensitivity index 𝛶𝛽

𝑅0 implies that for increasing 

the parameter 𝛽 by 10% will increase 𝑅0 by 10%. Therefore, it could be concluded that in order to control any infection, the 

transmission rate (𝛽) must be reduced. These normalized forward sensitivity indices are used used to measure the relative 

influences of the baseline parameter values on the overall disease dynamics process. The knowledge about influences of baseline 

parameters aids in determining proper intervention strategies. 

Parameters Sensitivity indices 

𝛬 +1 

𝛽 +1 

𝜌 -0.23330 

𝛾 +0.03990 

𝜂 -0.21053 

𝑑 -0.21053 

𝜉 -0.21053 

𝛿 -1 
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Figure 9: The figure is portraying contour plot of sensitivity of 𝑅0 varying the rate of recovery through pharmaceutical 

interventions (𝜉) against the rate of accurate media awareness (𝜌) (in left panel) and the rate of natural recovery through 

immunity (𝜂) against the rate of accurate media awareness (𝜌) (in right panel). 

 

 

 

Figure 10: The figure is portraying tornado plot of sensitivity of the parameters related to 𝑆∗ component of the endemic 

equilibrium point, 𝐸∗. 

Now, we enlist the normalized forward sensitivity indices of the parameters associated to the basic reproduction number 𝑅0 in 

Table 3 and it would be noticed that some parameters have positive sensitivity indices and some have negative sensitivity indices. 

Positive indices imply that, increase the value of these parameters will increase the value of 𝑅0 and negative indices imply that, 

increase the value of these parameters will decrease the value of 𝑅0. We should pay more attention to the most influential 

parameters. The normalized forward sensitivity indices indicate that the most sensitive parameters are constant recruitment of 

susceptible individuals (𝛬), effective rate of disease transmission (𝛽), accurate media awareness (𝜌) and rate of natural morbidity 

(𝛿). Thus, it is obtained that constant recruitment of susceptible individuals and effective rate of disease transmission must be 

reduced in controlling transmission. Again, accurate media awareness must be increased to control psychological fear and to 

curtail the chain of disease progression. 
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Figure 11: The figure is portraying tornado plot of sensitivity of the parameters related to 𝐸∗ component of the endemic 

equilibrium point, 𝐸∗. 

 

 

Figure 12: The figure is portraying tornado plot of sensitivity of the parameters related to 𝐼∗ component of the endemic 

equilibrium point, 𝐸∗. 

 

Figure 13: The figure is portraying tornado plot of sensitivity of the parameters related to 𝑅∗ component of the endemic 

equilibrium point, 𝐸∗. 
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9 Numerical Simulation 

In this section, we are aimed to simulate our proposed 𝑆𝐸𝐼𝑅 epidemic system (1) numerically with the help of baseline parameter 

values enlisted in Table 1 and MATLAB software. For the baseline parameter values enlisted in Table 1, it is observed that the 

epidemic system (1) possesses two equilibrium points - (𝑖) one disease-free equilibrium point (200, 0, 0, 0) and (𝑖𝑖) one endemic 

equilibrium point (148.958, 2.04167, 1.28947, 42.5526). Also, it is obtained that the basic reproduction number of the system, 𝑅0 =

1.516 > 1, for the accurate media awareness rate (𝜌) = 0.7 and psychological fear (𝜖) = 0.1. Again, we take the accurate media 

awareness rate (𝜌) = 0.803 and then 𝑅0 = 0.9954 < 1. In Figure 2, time series solution of the 𝑆𝐸𝐼𝑅 epidemic system (1) is calibrated 

taking 𝜌 = 0.803 and 𝑅0 = 0.9954 < 1. Figure 3 is indicating the time series evolution of the 𝑆𝐸𝐼𝑅 epidemic system (1) for different 

value of 𝜌 (𝜌 = 0.7, 0.75, 0.8). The figure is showing that for increasing value of awareness level of infection would be lowered 

and rate of recovery would be improved. In Figure 4, time series evolution of the epidemic system (1) is portrayed varying the 

rate of psychological fear, 𝜖 = 0.1,0.5,1.25. From Figure 4, it is obtained that a certain level of self-imposed psychological fear is 

necessary to cut the disease-progression chain but it would hamper the immunology of a patient so that recovery process would 

be delayed. Figure 5 is portraying time series solution for two different values of accurate media awareness rate (𝜌), 𝜌 = 0.7 and 

𝜌 = 0.803. Figure 6 is portraying the global stability of the epidemic system (1) around the  

 

Figure 14: The figure is portraying tornado plot of sensitivity of the parameters related to the basic reproduction number, 𝑅0. 

 

 

endemic equilibrium point 𝐸∗ irrespective of initial conditions in the 𝑆 − 𝐸 − 𝐼 phase space with 𝜌 = 0.7 and 𝑅0 = 1.516 > 1. 

Figure 7 is portraying the global stability of the epidemic system (1) around the disease-free equilibrium point 𝐸0 irrespective of 

initial conditions in the 𝐸 − 𝐼 − 𝑅 phase space with 𝜌 = 0.803 and 𝑅0 = 0.9954 < 1. 

In Figure 8, contour plot of sensitivity of the baseline parameters associated to the basic reproduction number (𝑅0) varying the 

rate of disease-transmission (𝛽) and the rate of accurate media awareness (𝜌) is portrayed. The figure is indicating that rate of 

disease-transmission should be decreased and the rate of accurate media awareness should be increased to reduce the value of 

𝑅0 below unity. In Figure 9, contour plot of sensitivity of 𝑅0 varying the rate of recovery through pharmaceutical interventions 

(𝜉) against the rate of accurate media awareness (𝜌) (in left panel) and the rate of natural recovery through immunity (𝜂) against 

the rate of accurate media awareness (𝜌) (in right panel) are portrayed. The figure is indicating that simultaneous increment in 

accurate media awareness and applications pharmaceutical interventions along with healthy immunity are able to reduce the 

value of 𝑅0 below unity. 

Figure 10, Figure 11, Figure 12 and Figure 13 are representing the tornado plots of sensitivity of the baseline parameters 

associated to the 𝑆∗, 𝐸∗, 𝐼∗, and 𝑅∗ components of the endemic equilibrium point, 𝐸∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗). Figure 14 is representing 

the tornado plot of sensitivity of the baseline parameters associated to the basic reproduction number, 𝑅0. 

 
10 Conclusions 

Calibrating the influences of self-imposed psychological fear and appropriate media awareness in transmission dynamics of an 

epidemic, a classic 𝑆𝐸𝐼𝑅 compartmental, deterministic ODE model is proposed and analyzed comprehensively. The epidemic 

system possesses two equilibrium points - one disease-free equilibrium point and another endemic equilibrium point. The local 

stability criteria of the epidemic system around both the equilibrium points are studied. Furthermore, global stability of the 
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proposed system around the disease-free equilibrium point is investigated. Thereafter, the sensitivity of the model parameters 

associated to the endemic equilibrium point is analyzed. We computed all the sensitivity indices of the model parameters related 

to all the four components of endemic equilibrium point indicating the influences of the model parameters on disease 

transmission process. Also, we compute the normalized forward sensitivity indices of the baseline parameters associated to the 

basic reproduction number. It is obtained that the most influential parameters are constant recruitment of susceptible individuals 

(𝛬), effective rate of disease transmission (𝛽), accurate media awareness (𝜌) and rate of natural morbidity (𝛿). 

The impact of self-imposed psychological fear is very significant factor measuring the degree of individual’s response during 

onset of an epidemic and available intervention strategies. To some extent, this psychological fear is necessary to decrease the 

level of infection. Accompanying this positive impact of fear, accurate media awareness is essential to aware individuals about 

the traits of an infection, non-pharmaceutical measures, and available pharmaceutical measures and to mitigate the global 

burden of deadly infectious disease. Heath policy makers should pay more attention to aware human beings in a large scale 

through accurate mass media presentations. 
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